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Abstract

A method for estimating periods corresponding to peaks in the spectral

density of univariate time series is proposed. The large sample distri-

bution of the estimator is derived under the assumption that the observed

process is from a known finite order autoregressive process. A simulation

study is performed to illustrate the results and the method is applied to

a series of hormone levels data.

KEY WORDS: Univariate time series; Spectral density function; Newton's

Method; Autoregressive processes.
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1. INTRODUCTION

Ai important use of time series analysis has traditionally been to

determine if rhythmic patterns exist in a time series Y. Udny Yule in 1927

proposed the (second order) autoregressive process as a model for periodic

phenomena. The purpose of this paper is to investigate the autoregressive

method for determining the period of such cycles.

Let {Y(t),tcZ1, Z the set of integers, be a zero mean covariance

stationary time series with autocovariance function R(v) = E(Y(t)Y(t+v)),

vZ and spectral density function

f = R(v)e- iV wf , = 2--n, [ ,

If we assume that f is bounded above and below by positive constants,

then (Masani (1966)) we can write as a limit in mean square

a c(j)Y(t-j) = E(t) , tEZ
j=0

where c(0) 1= 1, the a(.) are real numbers, and {c(t), teZi is a white noise

series of zero mean independent, identically distributed random variables

2
with common positive variance a

Thus Y can be written as an infinite order autoregressive process

(AR(-)) and f can be written

2f (1,0 = 1 [ , rn= 2 7 g(ei,))2 , 2 c0,2]1

where the complex polynomial g(z) - K.0 (J)zJ has no zeros in or on the

unit circle.

We seek an estimator of a period X - 2%/w corresponding to a peak in f,

i.e. estimate A such that f'(2i7) = 0 , f"() 0
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In section 2 we derive an estimator A of X based on an estimated

AR(p) approximant to f, i.e. use (1.1) with g truncated at some suitable

degree p. Section 3 derives the large sample distribution of A under the

assumption of known finite autoregressive order. The results of a Monte

Carlo simulation study illustrating the known order, unknown but finite

order, and infinite order cases are given in section 4 as well as the

analysis of a real time-series.

2. THE AUTOREGRESSIVE METHOD

Given a sample realization Y(l), .... Y(T) from Y, let PT(v) =RT(V)/R(0),

v 0, ...,M, where

1 T-v
RT(v) = Y(t)Y(t-v), v = 0, ... , M

t=l

and M is an integer larger than the approximating order p. Then p is chosen

as the value of m minimizing Parzen's (1974) CAT criterion

CAT(m) = T )TJ -- m = 0, ... ,
jffiOm

and the o are found by the Yule-Walker equations

T (j

and 6 is the Kronecker delta.
v

Thus the estimated AR() spectral density fi is given byP

.2

-J - ~ 1  wc[0,2rl( 2n p ij 2 €0,
2 X & i (J)etJl

j=o

To estimate the period A from f-, we need only find the value of w

p

maximizing a function of the form
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s(w) = 1 , wc[0,2]ljot(J)e iJw 2

given p, a(O) = 1, c(1) ..., a(p) . But this is equivalent to minimizing

s 1 w) = _= cL(j)eiJiw 2 which is the spectral density of a moving average

process of order p (MA(p)) with parameters a and white noise variance 2n.

Thus we can write

S l(I)i Ri(v)c! l i(o) + 2 Ri(v) Cos w
V=-p v=l

where the inverse autocovariance function (Cleveland (1972)) Ri(-) consists

of the autocovariances corresponding to the MA(p) process and are given by

p-v
Ri(v) = 2n ) a(j)c(j+v) , v = 0, ... , p

j=i

Then given'an initial approximation w0 to a value w* of w minimizing

h(w) = PvlRIMv Cos vw we use Newton's method to find w* as the limit [

of the sequence

Ri(v) Cos vw
nn

vRi(v) Sin vw
v=l

The initial value w is obtained in practice as the frequency of a

relative maximum of fi evaluated over a suitable grid of frequencies.
p

Then if K maxima of i^ are found, the estimated frequencies are
p

labelled ,1' "''' w° and corresponding periods by !laele 1i K od'*y.*' K

3. LARGE SAMPLE DISTRIBUTION OF AN ESTIMATED PERIOD

We assume that Y is in fact an AR(p) process with known p. Then

(Parzen (1961))
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V N
." (6, X N (0,A)

where &T ((), ... , &(p)), T = (a(l), .... r(p)), A = 2 r- has
~ ~ p

(j,k) element given by

V

Ak = [a(j-l-c)a(k-l-4) - a(p+l+t-j)a(p+l+-k)]
f=0

j,k = 1, .... p, v = min (j-l,k-l), and r is the o x p covariance matrix
p

of p consecutive Y's.

From this fact we have

Lemma

Let RiT ,(Ri(1), ..., Ri(p)), RiT = (Ri1), ... , ki(p)), and C be the

matrix having v row Cv = (C 1), C (p)) where rC yv+Ja ( v + )

4yj. v(j-v), and Yk = 1 if k = 0, ... , p and 0 otberwise.

Then

IT(Ri-Ri) l N(O,CAC )

Proof

p-v/(RI(v) - Ri(v)) = ii 2r [ci(j)ci(j+v) - cx(j)ct(j+v)]
j =0

F 2 i I {[&(j)-a(j)]&(j+v)+ct(j)[&(j+v)-a(j+v)]}
j=0

p-v
F T 27T {[&(j)-a(j)]a(j+v)+c(j)[(j4-)-a(j+v)]}

j-0

p
- Cv(J)z(J) ,
j =1

where z(j) = F (&(j)-c,(l)) , j = 1, .... p and the symbol % means

"has the same asymptotic distribution as". Thus /i (6i-Ri)P-C 'T (a-u)

and the lemma follows.

From this we obtain



Theorem

Let be the estimator obtained by the method of section 2 of the

true peak frequency II0. Then

/T (c_,-) -_ N (0, bT CAC Tb)

where b(v) = v Sin Wo/"( O , and h"(W - v2Ri(v) Cos vw

Proof

Since vRi(v) Sin vy = 0 and w is a consisLent estimator of w
v=l

since f converges almost surely to f , we can write

v (ii(v)-R1(v) Sin ye 0  vi(v) Sin v o  vki(v)[Sin vw-Sin Wo
v=1 v=l v=1

% 0 -0 -0

[ vRi(v)[Sin v(-Sin v0
P v=l
--40

S ince

vRi(v) [Sin vw -Sin vuO ]
v=l

vi(v)s,, v_-.in vw01 v=1 i(v)-Ri(v))[Sin v -Sin Vi, o1
v=+ v=+

u-u 0  u-u 0

v(ti(v)-Ri(v))(Sin ve-Sin v 0 )

and - - - -_0

• t II .. ... .... ... ." ........ ..........
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max i Sin v,-Sin vco0
: -- v~l, ..,p

" v=l

Thus

v(Ri(v')-Ri(v)) Sin vw 0

v=l _ h,,"0

-0 0.

and

vVT (Ri(v)-Ri(v) Sin vw0
-v10 h"(w 0 )

= bT VT (ii-Ri)

Corollary

1) T 6I-X0) V N(0O,0b T cAcTb)

2) If A1 , " K are estimators of X1, ... , K

(6-X) -- N(O,DBCAC T T T

where D = Diag (A22 .... , X2/2r), and the jth row of the k x pmatrixB

is the bT corresponding to w

2
We note that since b(v) - v Sin vw0 /h' (w 0 ) that oa , the asymptotic

variance of i is inversely related to the square of the second derivative

of the reciprocal of the function to be maximized. Thus the sharper the

peak in f, the more precisely A0 can be estimated.
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4. SIMULATION STUDY AND WORKED EXAMPLE

To illustrate the results of sections 2 and 3 above for known, unknown

but finite, and infinite order autoregressive processes we performed a

simulation study in two parts: 1) the known and unknown order case, and

2) the infinite order case.

4.1 Simulation of Known and Unknown but Finite Order Case

We simulated on an Amdahl 470V/6 computer at Texas A&M University

20 series each of length 80, 160, and 240 for each of the five autoregressive

models given in table 1. Each of the 300 series was obtained by

Y(t) = -)'(lc(J)Y(t-j)+c(t), t = p+l, ... , T where c(l), ... , E(T) are

iid N(O,a ) varlates obtained using the Box-Muller method (Kennedy and

Gentle (1980), p. 202) from U(0,1) variates generated by a composite

generator (Kennedy and Gentle (1980), p. 162), and starting values Y(l),

.. Y(p) were obtained as a N (O,r ) random variate where r is obtained
p - p p

by the algorithm of Pagano (1973).

Estimators of the spectral density for each series were determined

in four ways:

1) p,YW: the Yule-Walker equations were solved via Levinson's

algorithm (Levinson (1947)) to determine estimates of the parameters

of the AR(p) process.
2

2) p,LS: least squares estimators of a(l), ... , a(p), a were obtained

via a Gram-Schmidt orthogonalization procedure applied to the

regression model Y = -Xn+f: where YT = (Y(p+l), ... , Y(T)

T (a(1) .... a(p)), Xk= Y(p+j-k), j = 1, ... , T-p , kl,

p , and I = (r(p+l), ... ,



.23) p,YW: The CAT criterion determined order (with a i obtained via

Levinson's algorithm) parameters estimated by the Yule-Walker equations.

4) ,LS: Same as j,YW except parameters estimated by least squares.

Figure A contains plots of the true log spectra for each of the five

models, while table 1 lists the true periods (obtained from the coefficients

by the algorithm of section 2) for each model a-, well1 as To? . In each

case the peak of interest is the one for smallest frequency. We note thatI

models 1, 2, and 5 are very similar except for order and location of peak

while model 4 has a single broad peak (reflected in the size of To P.I

Model 3 is of particular interest since it appears that h"(8.951) ; 0

(note how this is reflected in To~ X)

Thus it appears that these models are representative of a wide class

of models and that one pathological case (model 3) has been included.

The purpose of this part of the simulation study is twofold:

1) In the p,YW and p,LS case to see if the methodology of section 2

agrees with the theory of section 3 and to compare the performance of YW

* and LS, particularly on model 3.

2) To investigate the distribution of i in the finite but unknown

order case.

* iTable 2 contains results for the p,YW and p,LS cases while figures

B-F display the 20 p,YW and p,LS estimated spectra for the three sample

sizes for each of the five models. A comparison of the spectra for the

YW and LS estimators shows they are almost indistinguishable except that

LS has a wider spectral range in models 2, 3, and 5 and that the peak in

model 3 is estimated somewhat differently by the two methods. This is

reflected in table 2 where it is seen that LS decomposes this peak into

two peaks in 4, 4, and 3 series (T = 80, T - 160, T -240) while YW does



this in 3, 1, and I serIes. Thus except for this pathological model we

find no large difference in the two estimation procedures. Also table 2

shows the expected adherence of the simulated data to the theory of

section 3.

Table 3 and figures G-K report the results of the p,YW analysis of

the 300 simulated autoregressive processes. The results indicate that

the method estimates periods remarkably well. In fact, even though 45%

of the series had the wrong order determined, the results of table 3 are

remarkably similar to those of table 2.

4.2 Simulation of Infinite Order Case

Twenty series of lengths 80, 160, and 240 were generated from the

MA(8) model Y(t) = c(t) + .309c(t-I) - .0748E(t-2 - .0113c(t-3) - .0853c(t-4)

- .0552c(t-5) + .0084c(t-6) + .4621c(t-7) + .288c(t-8) . Figure L contains

the true MA(8) log spectrum and the estimated autoregressive spectra for

each of the 60 simulated series. Table 4 describes the analysis of each of

the 60 series.

Inspection of table 4 raises two points:

1) The AR orders chosen appear to increase with sample size.

2) This increase leads to estimated models which make two (or even

three in one case) peaks out of the single broad peak.

'Tins it appears that if the process Y cannot be adequately represented

as a finite order AR process (in particular if the process has very broad

peaks), the proposed method may not be satisfactory.

We note however that if instead of uising approximating AR schemes

one used approximating MA schemes, this would make virtually no change in



the algorithm and only the maLrix A In th, asymptolIc covaritice of

would need to be changed in theorem 1 to the asymptotic covariance matrix

of maximum likelihood estimators of MA parameter estimators. We note

however that these methods cannot be extended to the mixed AR-HA processes

since neither their spectra nor its reciprocal can be written as a finite

degree trigonometric polynomial. In this paper we have confined our

attention to approximating AR schemes because of their computational at-

tractiveness and widespread use.

4.3 Analysis of Hormone Levels Data

We consider the levels of luteinizing hormone (LH) in a cow as

measured at 10 minute intervals for a 24 hour period (Rahe et al (1980)).

A plot of the data is given In figure M. Figure N displays the log

spectra of the p,YW determined AR(13) model

Y(t) - .2736 Y(t-1) + .0769 Y(t-2) + .0046 Y(t-3) + .1576 Y(t-4)

- .0131 Y(t-5) + .1486 Y(t-6) - .4795 Y(t-7) - .1942 Y(t-8)

+ .0546 Y(t-9) + .0876 Y(t-10) - .1546 Y(t-ll + .0756 Y(t-12)

.1926 Y(t-13) = C(t)

This model gives 3 = 7.278 time intervals with an estimated standard

error s = .116. Thus a large sample confidence interval for A is given

by (70.46 min, 75.10 min)
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1. Autoregressive Models used in Simulation Study

Model p A To 2 Coefficients

Number

1 7 5.900 3.120 -.6381 -.0140 .0295 .0272 -.1587

-.4581 .3572

2 7 7.398 4.240 -.2004 .1158 .1679 .1056 .1357

.0566 -. 3899

3 9 8.951 924.0 -.4335 .3740 .1071 .3213 .2071

.2089 .1942 -.2828 .3656

4 4 6.900 13.44 -.1477 .0601 .3565 .1964

5 10 7.586 4.80 -.3190 -.0175 .i803 .034C. .1832

.0423 -.1393 -.2463 .1365 .1974



2. Simulation Results for Known Order Case
a

Model 1 Model 2 Model 3 Model 4 Model 5

P 7 7 9 4 10

5.900 7.398 8.951 6.900 7.586

2
a 20.039 .053 11.550 .168 .036

22 ,160 .020 .026 5.775 .084 .018

2

°,0 .013 .018 3.850 .056 .012
X,240

AVE 5.912,5.937 7.410,7.412 8.776,8.82 6.897,6.891 7.480,7.504

2
.056, .041 .198, .173 .624, .736 .158, .148 .077, .071

T-80 b
CICb  .950, .900 .750, .750 1.000,1.000 1.000, .950 .850, .800

NBC 3 ,4

AVE  5.983,5.914 7.474,7.474 8.997.8.961 6.901.6.906 7.598,7.606

2

T-160 ..041, .019 .034, .033 .500, .504 .052, .054 .030, .028

CIC 1.000, .950 .900, .900 1.000,1.000 .950, .950 .850, .950

NB 1 ,4

AAVE 5.871,5.874 7.431,7.428 8.889,8.82 6.832,6.832 7.556,7.564

2
T2 .023, .021 .021, .021 .575, .652 .042, .041 .009, .009

T-240

CIC .900, .900 1.000,1.000 1.000,1.000 1.000,1.000 1.000,1.000

NB 1 ,3

First number in a pair is for Yule-Walker estimator, second Is for Least

Squares estimator.
b Confidence Interval Coverage. (Proportion of the 20 X within 2 ax of X)

C Number of Series producing dual peaks in model 3. These series not included

in calculation of S2 , cIc.o f



3. Simulation Results for Unknown Order Cased

Model 1 Model 2 Model 3 Model 4 Model 5

P 7 7 9 4 10

5.900 7.398 8.951 6.900 7.586
2

.039 .053 11.550 .168 .036
2

a2 1 6 0  .020 .026 5.775 .084 .018

2
ax,240 .013 .018 3.850 .056 .012

2

PAVE' 2 7.050, .366 6.650,9.621 7.650,5.713 3.850,1.082 7.150,10.239

CT=0 PMINOPMWIPCC 6,8,.65 0,13,.40 3,13,.4-* 3,7,.50 Q,II,.15
T-80

5.944. .061 7.384 .310 8.634, .832 6.786, .534 7 .5 78b, .151p •

CIC, NB .95 !.0 1.00 ,3 .85 .80

2
PAVE'si 7.630, .471 7.950,3.418 9.600, .568 5.050,2.050 9.800,4.695

PMtNPKPCC-  - 7,9,.65 7,13,.70 9,11,.55 3,8,.35 3,14,.60
T-160 Tw s 5.919, .016 7.479,.049 8.923, .557 6.811, .395 7.632, .057

CIC,imu 1.00 .85 1.00 ,3 .65 .85

2
pAVESi 8.000,2.947 7.550,1.520 10.30,3.800 4.900,2.305 10.45, .787

PMINPMAXPCC 7,13,.60 7,11,.80 9,15,.50 3.8,.60 10,13,.75
T-240 2

T-4 25.878, .045 7.449, .026 9.055, .592 6.830, .010 7.550, .012

CIC,NB .85 .95 1.00 ,3 .80 .95

a Yule-Walker estimators used.

b Series having no peaks not included in calculations.

. Prosortion choosing correct order.
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4. Simulation Results for MA(8) hodel a

T -80 T -160 T -240

Series Periods p Periods p Periods

Number

1 14 9.204,5.888 14 8.552,5.912 15 8.159

2 7 7.141 7 7.578 9 7.473

3 8 6.407 13 8.546,5.815 19 7.736,5.869

4 7 7.881 12 8.470,6.293 7 7.409

5 0 -- 7 7.964 7 7.529

6 8 7.238 14 9.357,5.997 9 7.540

7 2 5.382 7 7.559 14 8.871,6.278

8 7 7.452 7 7.324 7 7.351

9 7 8.015 7 7.110 14 9.117,6.351

10 7 7.312 7 7.817 8 7.209

11 7 7.386 7 7.097 10 7.896

12 4 6.328 7 7.541 7 7.585

13 7 7.678 7 7.133 7 7.111

14 7 7.508 7 7.408 14 8.824,5.906

15 7 6.916 8 6.589 15 7.563,5.807 V

16 7 7.216 14 8.500,6.280 14 7.788

17 2 5.021 7 7.750 18 9.785,7.393,5.529

18 8 6.847 7 7.255 15 9.181,6.367

19 7 7.365 7 7.060 9 8.405

20 7 6.787 7 7.335 14 8.937,6.019

Meanb 6.500 6.993 8.650 7.368 11.600 7.621

Varianceb 8.158 .591 8.134 .115 15.832 .133

a YW estimators used, true period is 7.334.

b These calculations for periods do not include peaks or multi-peaked series.



FIGURE A. True Log Spoctra of Five Autoregressive Models given in

Table 1

MHUL S

W08 &a a.ll &" 4@3 ILOL U

IS

J:I I

I L

II

rrMO

J fri



F'IGUREi~ It. Lop of 1h I) , YW anud p I. Ea Inwtv'1 Sp'ernil for Mode~l I for

Thro'o SampflpIe S I 7.P

d fUL 15 520 "Mh s 240

a U0

0. U. .6 02 L . . 6 L1 .J . OW 05 A

F REG,

*UAL I 160 *WE IUIS 3 60

a a0

a ib

-- J '.4-. G ''.

-sl
O-4v -

I, ___ _ p,__LS



~-21

FIGURI C. T-og of the p,YW and p,I.S I"!,t tnitrd Spectrno for Model 2 mr
Three Sample Sizes
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FlA(III. I). I.og of Ih , YW :iid p,I.S I'V:jI ii:iL ed Spectra for Model 3 for

Three Sample Sizes
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FIGURE E. Log of the p,YW and p,LS Estimated Spectra for Model 4 for

Three Sample Sizes
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FIGUREi. V. Lop of the p,YW and p,JS F.;;Ifiinted Spectra for Model 5 for

Three Sample Sizes
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FIGURE G. Log of the p,YW Estimated Spectra for Model 1 for Three Sample

Sizes
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FI RI II. Log of the p,YW Estimated Specira for Model 2 for Three Sample

Sizes
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FIGURE I. Log of the pYW Estimated Spectra for Model 3 for Three Sample

Sizes
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IGi(;URiE ,. 1.o of he p^),YW "it imaLed Spectra for Hodel 4 for Three Sample

Sizes
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FIGURE K. Log of the pYW Estimated Spectra for Model 5 for Three Sample
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FIGURE L. Log of True MA(B) Spectrum and ,YW Estimated Spectra for Three

Sample Sizes
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FIGUiRE M. Levels of Luteinizing Hormone in a Cow Measured at Ten Minute

Intervals for 24 Hours
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FlCURV N. Log of pYW Estimated Spectra for hormone Series
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